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ABSTRACT 
In 2023, the Australian Government issued �250,000 soil carbon credits following a meas
urement period characterised by high rainfall (Decile 10). The inferred soil organic carbon 
(SOC) sequestration rates during this period, ranging from �2 to 8 t C ha−1 yr−1, significantly 
exceed rates reported in Australian scientific studies (�0.1 to 1.2 t C ha−1 yr−1). Our analysis, 
incorporating SOC and biomass measurements alongside remote sensing of NDVI, reveals 
that these SOC gains were largely attributable to above-average rainfall rather than project 
interventions. Moreover, these gains were not sustained when rainfall returned to average 
levels, raising concerns about the durability of credited sequestration and its additionality 
beyond natural climatic variability. Our findings demonstrate that current safeguards within 
the Soil Carbon Method—such as withholding 25% of credits during the first measurement 
period—are likely insufficient to account for climatic variability. To strengthen the integrity 
of the carbon crediting system, we recommend extending the minimum measurement 
period for credit issuance to at least five years. Additionally, governments should establish 
science-based ‘reasonable bounds’ for expected long-term SOC gains from management 
practices to sense-check reported outcomes. These measures will ensure that credited SOC 
sequestration is more closely tied to management-driven outcomes rather than short-term 
climate-driven fluctuations.

GRAPHICAL ABSTRACT

A conceptual diagram of “new” carbon entering the soil system over a 25-year credit
ing period. Transient fluxes of SOC (blue) versus the accumulation of more persistent   
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SOC (green). The risk of over crediting transient fluctuations of SOC is represented by 
the circle with a cross.

Introduction

In 2023, the Australian Government’s Clean Energy 
Regulator (CER) made a large-scale issuance of 
�250,000 carbon credits from six grazing farms, 
with a market value of �$5.7 million USD (Q4 
2023 Australian Carbon Credit Unit spot price) 
using the Soil Carbon Method 2021. Re-measure
ment of soil organic carbon (SOC) stocks, at 2 to 
5 years after SOC baseline measurements, were 
made in 2021 and 2022 when large areas of east
ern Australia experienced Decile 10 annual rainfall 
(the highest 10 per cent of rainfall since 1900) [1]. 
This issuance has prompted questions about what 
the change in measured SOC represents – climatic 
variability or the new and eligible management 
activity. According to the integrity standards, car
bon credits should only be issued for additional 
carbon stored in agricultural soils that is unlikely 
to have occurred in the absence of the soil carbon 
project and that the higher level of soil carbon is 
reasonably expected to be maintained for the per
manence period (25 years) [2].

Soils contain the majority of organic carbon 
stored in terrestrial ecosystems [3] and even a 
small relative change in SOC can greatly influence 
future climate [4]. SOC is derived from the decom
position of carbon captured through photosyn
thesis, meaning that plant productivity set the 
upper limit to potential carbon inputs to the soil 
system [5,6]. Plants utilise the carbon assimilated 
by photosynthesis to build their structural compo
nents (both above and below ground) and to fulfil 
various metabolic requirements. This plant biomass 
is eventually transferred to the soil through proc
esses like litterfall, rhizodeposition, and decompos
ition [7]. Around 10-30% of biomass inputs will be 
stabilised as soil organic matter in the long-term, 
depending on factors such as soil type and 
climate [8].

The sequestration of SOC as a strategy for cli
mate change mitigation has been popularised by 
the aspirational goal established in the 4 per mille 
initiative [9] launched at the 21st Conference of 
the Parties (COP21) of the United Nations 
Framework Convention on Climate Change 
(UNFCCC). The original premise of 4 per mille was 
that if global SOC stocks in global soils could be 
increased by 0.4% per year, the SOC sequestered 

would offset annual fossil fuel-derived CO2 emis
sions. While the feasibility of this proposed rate 
has been debated extensively [10–13] the 4 per 
mille goal has inspired national climate solution 
policies and investments [14] and raised significant 
awareness on the role of soils in sequestering 
atmospheric carbon.

Soil organic carbon sequestration is a key prior
ity in the Australian Government’s Long-term 
Emission Reduction Plan for attaining net zero 
emissions by 2050 [15], while contributing to food 
security, ecosystem services and achievement of 
multiple United Nation’s Sustainable Development 
Goals (SDGs) [16]. The Australian Carbon Credit 
Unit (ACCU) Scheme is a enacted through the 
Carbon Credits (Carbon Farming Initiative) Act 
2011 (CFI Act), with each carbon credit (referred to 
as an ACCU under the legislation) representing 
one metric tonne of carbon dioxide equivalent (t 
CO2e) of either avoided emissions or C seques
tered in the soil or vegetation by a Carbon 
Farming project over a permanence period of 25 
or 100 years. The Carbon Credits (Carbon Farming 
Initiative – Estimation of Soil Organic Carbon 
Sequestration using Measurement and Models) 
Methodology Determination 2021 – hereafter 
referred to as the Soil Carbon Method 2021 – 
issues credits based on measured changes between 
SOC baseline stocks and future measured SOC 
stocks, with mandatory Government discounts for 
risk of reversal, soil sampling variance, and project 
emissions, and an additional discount if the 25 year 
permanence period option is selected (see Table 1
for a summary of the Soil Carbon Method 2021).

The main factors that influence SOC stock 
changes over time in agricultural systems are the 
impacts of climatic changes and management 
practices, through their effects on the inputs of C 
from plant litter and roots [17]. Rainfall is the pri
mary driver of variability in Australia’s carbon cycle, 
with seasonal, annual and decadal variability inter
acting to mediate plant composition, productivity, 
carbon inputs, and carbon losses from microbial 
activity [18–21]. Generally, increased rainfall enhan
ces primary productivity and the delivery of carbon 
inputs to the soil organic matter pool through lit
terfall, root growth, sloughing and exudation [22]. 
The most apparent trend in plant growth is intra- 
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annual variation, causing a seasonal saw-tooth pat
tern [23,24]. Australia also has high year-to-year 
and decade-to-decade variability in rainfall and 
pasture growth driven, in part, by the El Ni~no 
Southern Oscillation [25,26] and Inter-decadal 
Pacific Oscillation [27], although the latter may 
simply reflect clustering of El Ni~no and La Ni~na 
years [28]. Depending on the location, other per
sistent climate drivers such as the Southern 
Annular Mode [29] and Indian Ocean Dipole 
[30,31] also contribute to year-to-year variability in 
rainfall, which is around 23% more variable than 
any other country [32].

In 2023, the Australian Government issued 
approximately 250,000 ACCUs to six soil carbon 
projects in Queensland (QLD), based on measured 
increases in SOC over relatively short measurement 
periods of 2 to 5 years. While management practi
ces likely contributed to some of the observed 
changes, this paper presents evidence suggesting 
that increased rainfall was the primary driver of 
SOC gains. Significant uncertainty remains about 
the persistence of these gains throughout the proj
ect’s 25-year permanence period, and whether the 
current safeguard in the Soil Carbon Method – a 
25% temporary retention of credits in the first 
measurement period – is sufficient to account for 
climatic variability.

This paper aims to offer policy insights by evalu
ating the risks associated with issuing carbon cred
its during periods of favourable climatic 
conditions. To ensure that crediting more accur
ately reflects genuine management-induced SOC 
changes rather than short-term climatic variability, 
we propose two key recommendations for adjust
ing the current Soil Carbon Method 2021. These 

include extending the minimum measurement 
period to at least five years and establishing rea
sonable bounds for SOC sequestration based on 
the best available peer-reviewed evidence. 
Implementing these changes would enhance the 
integrity of the current policy framework for soil 
carbon credits.

Materials and methods

Soil carbon projects

In 2023, six soil carbon projects were issued 
ACCUs: ERF 108333 (94,666 ACCUs), ERF 105067 
(85,262 ACCUs), ERF 102074 (66,050 ACCUs), ERF 
143770 (3,559 ACCUs), ERF 162497 (2,110 ACCUs), 
and ERF 158470 (1,362 ACCUs) [33] (Supplement 
2). Each of these projects committed to a 25-year 
permanence period and implemented “improved 
grazing management” as the strategy intended to 
increase SOC.

For this study, we selected five of these soil car
bon projects (ERF 108333, ERF 105067, ERF 
102074, ERF 143770, and ERF 158470) based on 
criteria ensuring representation from multiple pro
ject developers and the availability of valid control 
sites for paired site comparison to assess the 
impact of the management changes.

In our analysis, we compared the registered pro
ject areas (improved management – Supplement 
2) with nearby control sites (no management 
change, as per the project baseline). Three 20-hec
tare polygons were randomly selected within each 
project area for comparison with three systematic
ally selected control polygons (also 20 hectares 
each) located within 50 km of the carbon project 
area. The control polygons were chosen to match 

Table 1. Australian soil carbon method 2021 - the carbon credits (carbon farming initiative – estimation of soil organic 
carbon sequestration using measurement and models) methodology determination 2021.
Baseline Credits are issued based on measured changes in soil organic carbon between two points in time, against a static 

baseline scenario. All subsequent measurements are compared to this initial static baseline.
Measurement intervals The first measurement occurs 1 to 5 years after baseline sampling, with subsequent measurements required at least 

every 5 years for the duration of the projects crediting period (25 years).
Net abatement This represents the increase in SOC stocks, minus any increase in project-related emissions (e.g. increased enteric 

methane due to higher stocking rates).
Additionality This criterion ensures that only new management practices are credited, adhering to a "newness" requirement.
Permanence Projects can choose between 25- or 100-year permanence periods. A 20% reduction in carbon credits is applied for a 

25-year permanence period, while a 5% reduction is applied for a 100-year period. Shorter permanence periods 
carry more uncertainty, so higher discounts help maintain the integrity of carbon credits issued.

Measure/model Soil core measurements are taken within the Carbon Estimation Area (CEA), which must be divided into at least three 
strata, with a minimum of three samples per stratum (9 samples per CEA). The model-assisted approach allows for 
SOC measurements to be spatially modelled or extrapolated over a portion of the project area in an attempt to 
reduce sampling costs.

SOC measurement Dry combustion analysis and spectroscopic modelling.
Further discounts Risk of Reversal Buffer: A 5% reduction in issued credits to account for the risk of carbon stock reversal. 

SOC Variance Discount: A discount applied for reporting high variability in soil carbon stocks within strata, estimated 
to be around 5% based on data variability. 

Temporary Discount: A 25% temporary discount is applied after the first sampling round to manage the risk that the 
initial rate of SOC increase may not be maintained. These withheld credits will be returned if SOC stocks are 
sustained. 

See supplementary information for more detailed information.
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the project sites in terms of land use (grazing), soil 
type, clay content, slope, aspect, and to ensure 
there was no evidence of management change.

The improved management practices under the 
Soil Carbon Method 2021 included one or a com
bination of the following: altering stocking rates, 
adjusting the duration and/or intensity of grazing, 
improving pastures through seeding, and applying 
nutrients to address material deficiencies. 
Management on the control sites followed a busi
ness-as-usual approach, with no soil disturbance, 
pasture renovation, field subdivision, or altered 
water distribution observed in the ten years prior to 
the present day, as verified by aerial photography. 
To reduce the risk of selecting polygons that may 
have undergone simultaneous management 
changes with the soil carbon projects, we selected 
polygons from at least two different properties. 
Spatial files for the locations of the soil carbon proj
ects were accessed from the CER website [33].

Examining the relative importance of 
management and rainfall on vegetation

To examine the impact of management change and 
rainfall on vegetation (with vegetation serving as a 
proxy for C inputs to the soil) we analysed satellite- 
derived Normalised Difference Vegetation Index 
(NDVI) (Landsat-8, 30 m resolution) spanning from 
2001 to 2023. NDVI is a widely used numerical indi
cator that uses the visible and near infrared bands of 
the electromagnetic spectrum to assess vegetation 
health and density. It is commonly employed in 
remote sensing applications to monitor and analyse 
vegetation dynamics over time and space [34,35].

To estimate the effect of the management inter
vention (i.e. carbon project implementation) on 
NDVI, we employed the Difference-in-Differences 
(DiD) approach using the R package “did” 
(Figure 1). We compared the difference in NDVI 
values from polygons within the carbon project 
area (treatment) against those from polygons out
side the project area (control) before and after pro
ject intervention. The NDVI values from the 
treatment and control polygons showed sufficient 
overlap (with differences not exceeding 5%), allow
ing us to average across three polygons for each 
group. The NDVI time series was constructed for 
the period from 2001 to 2023.

A 12-month moving average filter (left lagging, 
including data from the past 12 months) was 
applied to the NDVI dataset set to smooth the data 
and facilitate trend identification [36]. Additionally, 

we applied the same 12-month moving average fil
ter to the rainfall data to reduce noise from intra- 
seasonal and local-scale variability. Rainfall data 
were sourced from the SILO Climate Database [37]. 
To further aid in identifying trends, a non-paramet
ric smoothed lined was applied to the NDVI data 
set using the LOESS method (Locally Estimated 
Scatterplot Smoothing), with a span that responded 
to 50% of the nearest data points.

The DiD method is useful in studies where ran
dom assignment to treatment and control groups 
is not feasible. A key assumption underlying the 
DiD approach is the parallel trends assumption, 
which posits that, in the absence of the interven
tion, the difference between the treatment and 
control groups would have remained constant 
over time. By comparing the changes before and 
after the intervention, DiD isolates the effect of the 
intervention from other confounding factors, such 
as climate that might influence the outcome.

To assess the relative impact of various pre
dictor variable – temperature, rainfall, and treat
ment – on NDVI, we applied a Random Forest 
model to the data from each site. The model was 
applied to data from the first measurement period 
ranging from 2 to 5 years, depending on the car
bon project. We used the Increase in Node Purity 
metric to gauge the relative importance of each 
predictor variable. This metric indicates how much 
each variable contributes to reducing uncertainty 
or “impurity” in the decision trees within the 
Random Forest model. The Increase in Node Purity 
was normalised to sum to 100%, allowing us to 
express the contribution of each predictor as a 
percentage.

In-depth analysis at one carbon project site

While five carbon projects are examined for 
change in NDVI before and after project imple
mentation, we conducted a more in-depth analysis 

Figure 1. Conceptual representation of difference-in-dif
ference analysis on NDVI time-series for treatment (soil 
carbon project) and control (outside of carbon project). 
Project intervention represented by dotted black line. 
Difference in differences before and after intervention.
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on one soil carbon project (ERF 102074). This prop
erty included a research trial funded by Meat & 
Livestock Australia (P.PSH.2104) within the carbon 
estimation area of the soil carbon project. Figure 2
illustrates the boundaries of the soil carbon project 
(�2800 hectares) and the research project (�30 
hectares). The research trial, established in 2019, 
aimed to validate a measure-modelling approach 
to soil carbon accounting using the eddy covari
ance method [38] and does not capture the full 
measurement period of the soil carbon project 
(2016 to 2021). The research trial includes detailed 
measurements of SOC and biomass stocks from 
2019 – 2022. To infer SOC stocks from 2016 to 
2019, we used a statistical modelling approach 
based on measurement of SOC, biomass, rainfall 
and temperature 2019 – 2023 (see section “Gap 
filling SOC data for the soil carbon measurement 
period using modelling”).

Soil carbon data from soil carbon project (ID: 
ERF102074)

Soil cores (n¼ 24) were collected within a 30 hec
tare field using Balanced Acceptance Sampling 
(BAS) [39]. Balanced acceptance sampling involves 
stratification of the project area to lower sampling 
variance and the cost of estimation when com
pared to random sampling without stratification. 

The research area (30 hectares) was divided into 
three homogenous strata with respect to soil char
acteristics and vegetation cover. Within each stra
tum, eight random samples were collected from 
across the stratum.

Six sampling events occurred at time 0 
(December 2019) and at the following intervals: 
1 year, 1.5, 2.5, 3, and 3 years 10 months (October 
2023) to capture seasonal and annual variability. 
We returned to the same sampling location for 
each sampling event (± 7 m with GPS accuracy).

Soil coring was completed to a fixed target 
depth of 100 cm or the point of refusal in accord
ance with the Soil Carbon Method 2021. Soil cores 
were extracted using a hydraulic sampler fitted 
with PVC-lined push-probe with a typical cutting 
diameter of 42 mm (range 40.8 to 44 mm). Intact 
cores were returned to the laboratory and cut to 
fixed depth intervals (0-10, 10-30, 30-50, 50-70, 70- 
100 cm) for analysis. Soils were analysed at these 5 
depth layers, and results are presented for 0-30, 
30-100 cm depth increments according to the Soil 
Carbon Method 2021.

Whole soil within each depth layer was oven- 
dried at 40 �C and weighed. Soil moisture was 
determined from a subsample of �50 g, dried at 
105 �C (oven dry weight). The remaining whole soil 
was sieved to <2mm to remove gravel and coarse 
organic material (roots and litter). After sieving, the 

Figure 2. Soil carbon project area boundary (red) for project ERF 102074 and location of the research trial (yellow) within 
the soil carbon project area. Project boundaries provided by the Clean Energy Regulator [33].
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air-dried weights of the <2mm (air-dried fine frac
tion) and >2 mm (gravel) portions were recorded. 
The bulk density was calculated by dividing the 
oven-dried weight of the entire sample by the vol
ume of the sample.

Samples were analysed for Total Organic 
Carbon (TOC) using Dumas high temperature oxi
dative combustion followed by non-dispersive 
infrared detection of CO2 with an elemental ana
lyser (LECO Corporation) - Method 6B2 in [40]. The 
presence of inorganic C was tested by treating a 1- 
2 g subsample with 5% v/v of Hydrochloric acid 
and observing any effervescence. If any inorganic 
carbon was present, samples were pre-treated 
using 5-6% sulphurous acid and heated on a hot 
plate. The process was repeated until the efferves
cence ceased prior to oxidative combustion 
according to Method 6B3 [40]. The stock of soil 
organic carbon in all sub-layers collected and ana
lysed was calculated according to:

SOC t C=ha ¼ OC x BD x d x ð1 − gÞ

where:
SOC is the soil organic carbon stock within an 

individual soil sub-layer (tonnes of soil carbon/ha)
OC is the gravimetric concentration of organic 

carbon determined for the sub-layer (g organic 
carbon/100 g oven dry whole soil)

BD is the bulk density of the sub-layer (g oven 
dry whole soil/cm3 whole soil)

d is the depth of the sub-layer samples (cm)g 
is gravel proportion (g gravel/100 g over dry 
whole soil)

The difference in SOC stocks between time 
intervals was determined on an equivalent soil 
mass (ESM) basis according to the Soil Carbon 
Method 2021 (Division 4, Section 13). The ESM is 
set in the baseline sampling round and acts as a 
cap to the mass of soil for which carbon stocks are 
calculated in subsequent sampling rounds.

Pasture biomass data

Repeated aboveground pasture biomass measure
ments (50 cm x 50 cm) (n¼ 24) were taken before 
and after grazing at pasture points paired to soil 
coring sites (using hand-held GPS with an accuracy 
of ± 5 m). Samples were dried at 60 �C to deter
mine the standing above ground dry matter (DM). 
A total of 11 sampling events occurred between 
December 2019 and July 2023.

Gap filling SOC data for the soil carbon 
measurement period using modelling

To address the absence of measured SOC data for 
the period from 2016 to 2019, a statistical model
ling approach was employed to estimate the miss
ing SOC values. A linear regression model was 
developed to predict SOC as a function of meas
ured SOC and biomass, as well as NDVI, rainfall, 
and temperature data from the period 2019 to 
2023. This approach enabled us to gap-fill SOC 
data for the period 2016 to 2019, for which data 
were unavailable for the research project and 
undisclosed from the soil carbon project.

Net primary productivity of soil carbon projects

We determined the net primary productivity (NPP) 
of soil carbon project sites in 2022 (when most car
bon projects were re-measured after baseline sam
pling) using the globally gridded MODIS-NPP [41] 
extracted for the Australian continent at 500 m 
pixel resolution. Annual Terra Moderate Resolution 
Imaging Spectroradiometer (MODIS) GPP and NPP 
is derived from the sum of all 8-day GPP Net 
Photosynthesis (PSN) products (MOD17A2H) from 
the given year. The NPP value is the difference 
between the GPP and the Maintenance Respiration 
(MR). The NPP was averaged for 2022 across soil 
carbon project sites to ascertain a sense-checking 
value for reported SOC gain by the (soil) Carbon 
Service Providers. We acknowledge that NPP from 
remote sensing productions is subject to large 
uncertainty [42], and therefore validated the NPP 
value for the ERF 102074 soil carbon project using 
biomass data (section “Pasture biomass data”) 
(combined with a root/shoot ratio data) and Eddy 
Covariance flux tower data [38]. Ultimately, deriv
ing the NPP from remote sensing is not intended 
to be a highly accurate prediction; rather, we sug
gest it as a value to sense check reported SOC 
stocks gains.

Data description

SOC and pasture biomass data

This section presents data from the research trial 
(2019 to 2023) conducted at the same site as the 
soil carbon project ERF 102074, which was issued 
66,050 credits based on re-measurements in 2021 
[33]. Although the trial was originally established 
for other research objectives, the SOC and pasture 
biomass data collected at this site provide valuable 
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insights into the highly dynamic and the transient 
nature of SOC over time

In the research trial, the measurement of pas
ture biomass and SOC stocks commenced during a 
period of the lowest rainfall on record (2019) 
(Figure 3). In December 2019, the pasture biomass 
was <0.2 t dry matter (DM) ha−1 and SOC stocks 
were 74.2 t C ha−1 (0-100 cm) (Figure 4 a). In 2021 
and 2022, rainfall was 33% higher than the long- 
term average (1910-2023), increasing pasture bio
mass to 6.4 t DM ha−1 and SOC stocks to 82 t C 
ha−1 (0-100 cm) by May 2022 (Table 2). Over 
2.5 years, this equates to SOC gains of 7.7 t C ha−1 

(0-100 cm) or 3.1 t C ha−1 yr−1. These results have 
been validated by Eddy Covariance flux tower 
measurements [38]. However, by October 2023, 
with a return to average annual rainfall, pasture 
biomass decreased to 3.7 t DM ha−1, while SOC 
stocks decreased to 75.7 t C ha−1 (0-100 cm). This 
represents a total increase in SOC stocks of 1.4 t C 
ha−1 (2019 to 2023), with an annualised sequestra
tion rate of �0.4 t C ha−1 (0-100 cm). These results 
indicate that the SOC “peak” observed in 2021 to 
2022 was temporary, with �50% (0-30 cm) to 
�80% (0-100 cm) of the SOC gain subsequently 
“lost” from the soil system as rainfall returned to 
average conditions.

In 2021, the soil carbon project was re-meas
ured at the SOC “peak” (indicated by the second 
grey dotted line in Figure 4a), resulting in the issu
ance of 60,050 credits. However, much of the cred
ited SOC gain has since been lost from the soil, 
meaning that a substantial portion of these credits 
no longer represent climate change mitigation. 
This raises questions about whether the current 
provisions in the Soil Carbon Method to account 
for climatic variability are sufficient (see section 

“Current safeguards to account for climatic vari
ation are insufficient”).

Even when accounting for the impact of rainfall 
on SOC gains, the inferred rates of SOC gain over 
the project periods seem unusually high in com
parison to SOC measured in the research trial. By 

Figure 3. Cumulative probability distribution of annual 
rainfall (1910-2023) for the research trial site in Southern 
Queensland, Australia. The years 2011 to 2023 are 
annotated.

Figure 4. (a) Soil organic carbon (SOC) (t C ha−1) (0-30 cm) 
and aboveground pasture biomass (t dry matter, DM 
ha−1) on the grazing research trial site (same site as ERF 
102074). Results for 0-100 cm are in Table 2. Purple line 
shows inferred rates of SOC gain in the carbon project and 
the yellow line shows SOC gain measured in the research 
trial, (b) Normalised Difference vegetation Index (NDVI) 
comparing (i) project site¼ green (soil carbon project 
area), (ii) control¼ grey (area outside the soil carbon pro
ject boundary with similar soil type, land use, topography 
etc.) with LOESS smoothing function applied (see meth
ods), and (c) Rolling 12 month average rainfall (left lag
ging) (mm) and MODIS-net primary productivity (NPP) (tC/ 
ha) for the carbon project site. The grey dotted lines indi
cate the first measurement period (2016-2021) for the soil 
carbon project, the period over which carbon credits were 
issued.

Table 2. Mean SOC stocks (t C ha−1) (±SE) 0-30 cm and 
0-100 cm for six sampling events from December 2019 to 
October 2023.
Sampling date Mean SOC (0-30 cm) SE Mean SOC (0-100 cm) SE

December 2019 34.96 1.20 74.27 3.62
January 2021 36.32 1.47 64.49 4.86
October 2021 36.68 1.58 73.39 4.21
May 2022 40.84 2.11 81.98 4.27
February 2023 33.56 1.89 65.54 3.85
October 2023 37.70 1.65 75.67 3.91
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examining the CER’s Project Register, we can infer 
the rates of SOC sequestration for this project by 
calculating the credits issued, factoring in the proj
ect’s Carbon Estimation Area (CEA), and applying 
necessary deductions (see Supplement 1 for 
deductions and Supplement 4b for inferred rates 
of SOC sequestration). The inferred SOC gain over 
a five-year period was approximately 12.5 t C ha−1, 
equating to an annualised SOC gain of �2.5 t C 
ha−1 yr−1. We can assume that the period from 
2016 (when the project was implemented) to 2019 
was likely characterised by SOC loss (Figure 4a - 
see methods for modelling). From the 2019 
drought to 2021 (when re-measurement occurred), 
the research trial measured SOC gains of 7.7 t C 
ha−1, whereas the soil carbon project measured 
the accumulation of �12.5 t C ha−1. This repre
sents an SOC accumulation rate around 60% 
higher than our observations. This discrepancy 
could be due to the inherent variability in SOC 
sampling. However, given the significant difference 
in reported SOC gains, we also consider the possi
bility of errors in the application of the method 
e.g. incomplete removal of root biomass, the diffi
culty in removing inorganic carbon at depth [43], 
and the incorrect application of spectroscopic 
measurement and modelling. It is important to 
note, however, that since SOC data from Australian 
Government carbon projects administered by the 
CER are not publicly available, our inference on 
this matter remains speculative.

NDVI analysis

The SOC and biomass data from the research trial 
were integrated with a longer-term record (2001 
to 2023) of NDVI to achieve two main objectives: 
(a) to assess whether the implementation of man
agement practices had a significant impact on 
NDVI by comparing treatment and control groups 
before and after soil carbon project implementa
tion using DiD analysis, and (b) to apply a Random 
Forest model to the NDVI data over the project 
measurement period (2 to 5 years depending on 
the project) to evaluate the relative importance of 
temperature, rainfall, and management practices 
on NDVI. The NDVI analysis was also extended to 
the four other soil carbon project sites. This NDVI 
analysis is based on the assumption that NDVI 
serves as an indicator of the amount of fresh 
organic material added to the soil, which can sig
nal potential increase or decreases in SOC stocks 
[44–46].

NDVI comparisons between the carbon project 
and control sites are presented in Figure 4b for 
ERF 102074 and in Figure 5 for the other soil car
bon projects (see Supplement 5 for the full NDVI 
and corresponding rainfall time series for each pro
ject). We hypothesized that the implementation of 
management changes under the soil carbon proj
ects would lead to an increase in NDVI relative to 
the control sites. For ERF 102074, the project 
implementation resulted in a marginal but not 
statistically significant decrease in NDVI compared 
to the control (p¼ 0.07). A similar pattern was 
observed in ERF 158470, where the decrease in 
NDVI relative to the control was statistically signifi
cant (p¼ 0.01). In contrast, for ERF 143770 and ERF 
108333, there was no significant impact of project 
implementation on NDVI. ERF 105067 was the only 
project that showed a positive impact of project 
implementation on NDVI, although this difference 
was not statistically significant.

To assess the relative influence of temperature, 
treatment, and rainfall on NDVI, we applied a 
Random Forest model to the data at each site. This 
analysis focused on data from the first measure
ment period, which ranged from 2 to 5 years 
depending on the carbon project. To evaluate the 
relative importance of the predictor variables, we 
used the Increase in Node Purity metric. This met
ric reflects how much each variable contributes to 
reducing uncertainty or “impurity” in the decision 
trees within the Random Forest model.

To make the contributions comparable, we nor
malised the Increase in Node Purity so that the total 
sums to 100%, allowing us to express the impor
tance of each predictor as a percentage. This 
approach enabled us to quantify and rank the signifi
cance of treatment, temperature, and rainfall in pre
dicting NDVI at each site. The Node Purity results are 
provided for each site in Supplement 6 and summar
ized across sites in Figure 6 (inset). Our results 
showed that rainfall, together with temperature, 
played a dominant role in enhancing the model’s 
predictive power. Specifically, the combined contri
bution of rainfall and temperature accounted for 
83% to 98% of the total Increase in Node Purity, indi
cating that these variables are crucial in reducing 
model uncertainty and improving the accuracy of 
NDVI predictions. Management accounted for 2 to 
17% of the total Increase in Node Purity.

While our findings indicate that climate is the 
dominant factor influencing NDVI variation during 
the first measurement period, this does not mean 
that changes in management practices had no 
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effect on vegetation. For example, NDVI has limita
tions in detecting the more subtle variations in 
vegetation structure and species composition, 
namely the differences in legume content and per
ennial versus annual species that may vary 
between management treatments [5]. 
Furthermore, NDVI cannot detect belowground 
biomass (i.e. roots). However, what is critical is that 
the impact of management on vegetation is much 
smaller – and more challenging to detect – than 
the more considerable temporal variation in vege
tation driven by climate.

Discussion

In this study, we have presented high-frequency 
temporal measurements of SOC from a research 
trial co-located with a soil carbon project, revealing 
that SOC stocks were transient and primarily influ
enced by rainfall. We extended this analysis over a 
longer timeframe and across additional soil carbon 
project sites (using NDVI as a proxy for C inputs) 
and found that the implementation of these proj
ects did not significantly increase NDVI relative to 
control sites. In this section, we will discuss the 
implications of these findings for the Soil Carbon 

Figure 5. Normalised Difference vegetation Index (NDVI) comparing for the soil carbon project sites (a to d). Project 
site¼ green (soil carbon project area), and control¼ grey (area outside the soil carbon project boundary with similar soil 
type, land use, topography etc.) with LOESS smoothing function applied (see methods).
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Method, focusing on two key issues: (a) the scien
tific uncertainty surrounding the long-term persist
ence of SOC accumulated during favourable 
climatic conditions, and (b) the apparent inad
equacy of the current safeguard within the Soil 
Carbon Method (a temporary 25% discount in the 
first reporting period) to account for short-term 
variability driven by climatic factors. Given these 
concerns and uncertainty, we propose adjustments 
to the current Soil Carbon Method to better align 
crediting with management practice change as 
opposed to climatic variability.

Scientific uncertainty on long-term SOC 
dynamics over the remaining project period

Scientific uncertainty on long-term SOC dynamics 
is due to a lack of high-quality time-series datasets 
that track paired control and treatment plots in 
agricultural systems, especially in different contexts 
[47]. The scarcity of long-term, repeated SOC sam
pling across different soil types, depths (> 30 cm), 
climates, and management scenarios results in low 
confidence, both in Australia and globally, in pre
dicting the climate benefits of SOC sequestration 
and determining the most effective methods for 
achieving it [48].

The capacity of soil to retain additional C inputs 
will largely depend on the ability of the soil to 

“protect” added organic material [49,50], which in 
turn depends on clay content and mineralogy, soil 
structure (micro and macro aggregation), location 
within the soil profile, chemical nature and com
position of organic matter inputs, the occupancy 
of mineral surfaces by pre-existing carbon com
pounds, i.e. the degree of SOC saturation [51], and 
the pedoclimatic conditions and management 
practices at the particular site [52].

Due to the influence of soil physicochemical 
properties on the retention of more stable SOC, 
the ability to retain carbon inputs will likely vary 
between soil carbon projects, given their different 
soil properties and pedoclimatic environments. For 
example, ERF 143770 is located on a coarse-tex
tured soil (�15% clay content) where SOC accrual 
and persistence will be more challenging due to 
the lack of reactive mineral surfaces. In contrast, 
ERF 102074 with �40% clay content will have a 
greater capacity for stabilising and accumulating 
mineral-associated SOC due to the higher availabil
ity of reactive clay mineral surfaces [53].

Other considerations that generate uncertainty 
on the long-term ability of soil to build and retain 
organic carbon include (a) the possibility of SOC 
saturation whereby soils have a limited storage 
capacity and that the rate of SOC sequestration 
decreases as SOC approaches the maximum stor
age capacity [51], (b) the existence of a priming 

Figure 6. The relationship between NDVI and rainfall as the primary predictor of NDVI in the Random Forest model. The 
bar graph inset shows the contribution of the predictors (rainfall, temperature, and treatment) to NDVI (average across 
all sites). Node purity scoring for individual sites is shown in Supplement 6. A higher Node purity score equates to greater 
importance of predictor variable.
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effect, whereby increased C inputs (i.e. through 
management change) stimulate soil microbial 
activity, leading to accelerated decomposition of 
existing SOC stocks [54,55] particularly at depth 
[55], (c) building persistent mineral-associated soil 
organic matter including microbial necromass, 
which can have a carbon to nitrogen ratio as low 
as �5:1 [56], is reliant on the availability of nitro
gen in the form of synthetic or organic fertilisers 
and legumes that can increase nitrous oxide emis
sions and negate the benefit of sequestering SOC 
[57–60] (d) large and unexpected losses – with no 
obvious moisture or temperature drivers but most 
likely attributed to a decline in mineral nitrogen 
availability – have been observed in Australian 
grazing and cropping systems over the long-term 
(an increase in SOC for 12 years followed by a 
reversal back to starting levels after 15 years) [61], 
(e) as C inputs increase and SOC stocks rise, micro
bial activity intensifies in response making 
increases in SOC a temporary phase that reflects a 
lag between plant inputs and microbial decay until 
a new SOC-equilibrium is reached [6], and (f) there 
is strong evidence that SOC stocks will decline 
under climate change [62–65] particularly in graz
ing soils in semi-arid and arid regions of 
Australia [66].

Current safeguards to account for climatic 
variation are insufficient

The current Soil Carbon Method operates on the 
assumption that climatic variability – and the 
resulting SOC “peaks and troughs” – will balance 
out over a 25-year period, allowing the true effects 
of management practices to become evident. 
However, the assumption that climatic variability 
will balance out over a 25-year period is not sup
ported by empirical evidence (Figure 8).

Rainfall variability in Queensland, Australia (1890 
to 2023) is illustrated in Figure 8 revealing multi-dec
adal patterns of rainfall variability. Hypothetically, if a 
soil carbon project was implemented in 1930 (scen
ario 1), the project would have been baselined under 
lower-than-average rainfall and completed in 1955 
under higher-than-average rainfall, likely resulting in 
a corresponding positive trajectory in SOC (even if 
no management change was implemented). 
Similarly, if a carbon project was baselined in 1965 
under higher-than-average rainfall conditions (scen
ario 2) and completed in 2000, there was a down
ward trajectory in rainfall. Arguably, the ability to 
maintain or slow the loss of SOC stocks during a 

downward trajectory in rainfall should warrant the 
allocation of soil carbon credits. The operation of 
multi-decadal drivers on rainfall variability highlights 
the limitations of using a static baseline to assess 
SOC change over time; however, a detailed discus
sion of this is beyond the scope of this paper.

The current Soil Carbon Method 2021 includes a 
safeguard designed to account for short-term fluc
tuations in SOC due to climatic variability. 
However, we argue that the 25% temporary reten
tion of credits at the first re-measurement after 
baseline—a reduction from the 50% retention 
required in the 2018 Method—may not be suffi
cient to mitigate the risks associated with climatic 
fluctuations. Additionally, it is important to 
acknowledge that if SOC levels peak during subse
quent measurement periods, there is no provision 
for temporary retention of credits.

To assess the sufficiency of the 25% temporary 
discount of carbon credits, we used peer-reviewed 
literature to determine reasonable bounds for 
long-term SOC sequestration in Australia’s grazing 
systems. A global synthesis of grassland manage
ment impact on SOC stocks showed sequestration 
rates for grazing of 0.28 t C ha−1 yr−1, with the 
largest increases following conversion from cultiva
tion (0.87 t C ha−1 yr−1) and sowing legumes (0.66 
t C ha−1 yr−1) [68]. In Australian grazing systems, 
SOC sequestration rates of �0.1 to 1.2 t C ha−1 yr−1 

have been reported (mostly to 30 cm) [5, 69–72] 
although when summarised in a meta-analysis 

Figure 7. A schematic diagram illustrating the application 
of a temporary 25% discount on credits during the first 
measurement period (grey box) for soil carbon projects 
that have been issued credits (Supplement 4b). The dia
gram presents realistic long-term scenarios of SOC seques
tration categorized into low, medium, and high scenarios. 
Each point on the diagram represents an individual carbon 
project that has been issued credits by the Clean Energy 
Regulator, adjusted by subtracting the temporary 25% dis
count. The temporary discount is likely to be sufficient 
only if medium to high rates of SOC sequestration (>0.3 t 
C ha−1 yr−1) are sustained over the entire crediting period 
(25 years). Projects where over-crediting is likely are indi
cated in red.
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(n¼ 19) there was no overall significant impact of 
grazing stocking strategies on SOC stocks [73].

Within the reported range of SOC gains, consid
eration was given to the timeframe over which 
SOC change occurred and the baseline SOC stocks. 
For example, in the case of Badgery et al. [70], 
where SOC gains of 1.2 t ha−1 yr−1 (0-30 cm) were 
measured, this occurred over the short-term 
(�5 years) when cropland (with a low SOC base
line) was converted to pasture, where we expect 
relatively large SOC gains due to prior SOC deple
tion [74]. Several international studies demonstrate 
relatively large long-term SOC gains in grazing sys
tems, e.g. the adoption of the adaptive multi-pad
dock (AMP) grazing method resulted in SOC gains 
of 0.6 t C ha−1 yr−1 (0-100 cm) [75] to 2.3 t C 
ha−1 yr−1 (0-100 cm) [76]. However, these studies 
occurred in climates where annual precipitation far 
exceeds the average rainfall in the soil carbon pro
ject areas examined here. The use of international 
studies to extrapolate expected SOC sequestration 
rates in Australia must be applied with caution, as 
it is likely that sequestering SOC under Australia’s 
typically low soil fertility, high temperatures, and 
highly variable rainfall patterns is more challenging 
than in temperate climates [32, 77].

Given existing peer-reviewed data for Australian 
grazing systems, we suggest that long-term 
(25 years) SOC sequestration gains of �0.6 t C 
ha−1 yr−1 (0-100 cm) represents a realistic upper 
bound of what is achievable. In contrast, inferred 
rates of short-term SOC gain (2 to 5 years) from 
the soil carbon projects issued credits range from 
0.7 to 4.8 t C ha−1 yr−1 with an average of 3 t C 
ha−1 yr−1 (Supplement 4b). When comparing these 
short-term gains to long-term SOC sequestration 
scenarios (low, medium, and high), the temporary 
25% discount appears sufficient if all projects 
achieve the high-rate best case scenario (0.6 t C 
ha−1 yr−1). However, if projects only achieve the 
medium long-term scenario (0.3 t C ha−1 yr−1), 
approximately 40% of projects will be over-cred
ited (Figure 7).

Over crediting in the short term, without a 
clearly defined legislative mechanism for credit 
payback if carbon storage is not sustained in the 
long term, poses a significant risk. Although the 
legislation states that the Government may require 
credit relinquishment, the specifics of this process 
are not clearly defined. If the Government does 
not enforce credit payback in cases of over credit
ing, the integrity of the ACCU Scheme could be 
compromised, particularly if these credits are used 

to offset emissions elsewhere. Conversely, if the 
Government does implement a payback mechan
ism, it could be extremely challenging to enforce. 
Therefore, our recommendation is to proactively 
avoid this situation by ensuring that credits issued 
are based on conservative and realistic estimates 
of long-term carbon sequestration.

Solutions to prevent over crediting in the short- 
term

We align with the view that soil carbon projects 
should proceed as the current knowledge base is 
sufficient to suggest that SOC sequestration is 
achievable under the right conditions—specifically, 
with the appropriate combination of soils, climate, 
and management practices. However, it is crucial 
to proceed with caution and ensure that credits 
are tied to management practice changes rather 
than fluctuations driven by climatic variability.

The most obvious solution to discern the cli
matic impact on SOC sequestration is pairing the 
carbon estimation areas within soil carbon project 
areas with a nearby control site that represents 
business-as-usual management. This control 
approach is adopted under the Verra method 
(VM0042) where control sites must be located 
within 250 km of project sites in areas with similar 
climate, soil texture, SOC content, topography, and 
land use history. However, while conceptually sim
ple, the implementation of a paired measurement 
site is costly and operationally difficult.

Figure 8. Rainfall temporal variability in pasture growing 
season (November to March) 1890-2023 represented as 
standard deviations from the mean rainfall (1890-2023). 
Rainfall averaged across the main grazing district in 
Queensland’s (�60% of the State’s land area carrying over 
80% of the State’s livestock [67]. 1 year (grey), 5 year 
(green), and 25 year averages (blue). Boxes represent 
hypothetical 25 year project crediting periods, with scen
ario 1 showing a positive trend, and scenario 2 showing a 
declining trend over 25 years.
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An alternative to a measured control site is to 
use a national or regional Soil Carbon Monitoring 
Network to generate longitudinal datasets com
prising high-density, within-field sampling data. 
Such data could be used in SOC biogeochemical 
models to simulate SOC change attributed to man
agement (i.e. without the climatic signal) and valid
ate the accuracy and robustness of project-level 
measurements. In Australia, the Terrestrial 
Ecosystem Network (TERN) [78], in collaboration 
with the commodity-specific Research and 
Development Corporations (RDCs) and State and 
Federal departments, could provide a solid founda
tion for a sustainable, long-term, and cost-effective 
monitoring network in agricultural systems.

The design of a robust Soil Carbon Network has 
been suggested by numerous authors [79–81] and is 
already being implemented in countries such as 
New Zealand [82]. In short, intensive research hubs 
should be established in representative agroecologi
cal zones, with high-resolution, continuous measure
ments of SOC change, demonstrating current and 
emerging management strategies to optimise SOC, 
and reduce non-CO2 greenhouse gases such as N2O. 
Micrometeorological flux towers that use the eddy 
covariance method can provide continuous data on 
the fluxes of carbon, water, and energy – all critical 
components of agricultural productivity and profit
ability. Combining flux tower measurements with 
management manipulation experiments, satellite 
remote sensing, direct SOC measurements, and non 
CO2 gas monitoring would significantly advance the 
understanding of SOC and greenhouse gas dynamics 
and enable the refinement of SOC models to predict 
the impact of management under different soil types 
and climatic conditions.

A coordinated Soil Carbon Network using stand
ardised protocols would enable the collection and 
public dissemination of reference data, promoting 
more informed decision-making by land managers 
regarding the potential to implement a registered 
soil carbon project. Furthermore, such a network 
would improve the accuracy of Australia’s National 
Greenhouse Gas Inventory and allow progress to 
be tracked under the National Soil Strategy, the 
UN Sustainable Development Goals (specifically 
SDG 15.3), and the FAO’s Recarbonisation of 
Global Agricultural Soils (RECSOIL) program.

The Government should consider establishing 
“reasonable bounds” for long-term SOC gains 
resulting from management changes in Australia, 
as defined by the best available scientific evidence. 
Any gains above this threshold (e.g. 0.6 t C 

ha−1 yr−1 in grazing systems) should be temporar
ily withheld and only released when sufficient evi
dence confirms that these rates can be maintained 
over the long term (e.g. 10 years or two further 
sampling events). Upper bounds should be defined 
based on the most relevant scientific evidence for 
the locality (soil type and climate) and land-use 
system of the soil carbon project. These bounds 
can be revised if new evidence emerges that sup
ports higher long-term SOC sequestration rates.

Defining “reasonable bounds” for SOC gains 
would allow the Government to compare reported 
SOC gains with those measured in a similar agroe
cological region and scrutinise what may be exces
sive claims of SOC sequestration. For example, SOC 
gains of up to 8.3 t C ha−1 yr−1 have been reported 
(Supplement 4a and b), which is unrealistic given 
that plant productivity – both above and below 
ground i.e. net primary production (NPP) – sets an 
upper limit on potential carbon inputs to the soil 
system [6]. Considering that the average NPP of 
the carbon project areas was 10.5 t C ha−1 yr−1 in 
2022 (as determined by MODIS-NPP product – see 
methods), SOC gains of 8 t C ha−1 yr−1 would 
imply that �80% of fixed carbon was converted to 
SOC. Similarly, ERF 105067, which experienced pas
ture dieback and drought during the measurement 
period [83], has been credited for SOC gains �3.5 t 
C ha−1 yr−1, equating to an NPP-to-SOC conversion 
of �50% (annualised SOC gain/average annual 
NPP). In contrast, scientific studies demonstrate a 
biomass-to-SOC conversion of around 10 to 30% 
[8, 84–86] with the research trial presented in this 
paper showing an NPP-to-SOC conversion of 
�11%. The remaining biomass, not converted to 
SOC, is either consumed by microbial decomposers 
and released as CO2 through respiration (�two- 
thirds%) [56,87–90], grazed and metabolised by 
herbivores (with some carbon returned to the soil 
via excreta), leached from the soil and transported 
off-site, lost through fire, or left standing as bio
mass or litter. Therefore, given the high rates of 
reported SOC gains and NPP-to-SOC conversions, 
we posit that there may be issues related to the 
application of the current Soil Carbon Method, 
such as incomplete removal of root biomass and 
inorganic carbon at depth, as well as the improper 
use of spectroscopic techniques. However, without 
public access to SOC project datasets to scrutinise 
the data, these concerns remain speculative.

The length of the measurement period, which 
can currently occur on an annual basis, should be 
adjusted to at least five years to reduce the impact 
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of inter-annual rainfall variability on SOC gains. 
This is pertinent to the issuance of credits under 
ERF 143770 and ERF 158470, which were issued 
credits over a short time frame (2 years), whereby 
SOC was baselined during average rainfall condi
tions and re-measured during “peak” rainfall condi
tions (Supplement 5). The soil carbon projects that 
measured over a 5 year period were able to cap
ture inter-annual variation to a greater extent.

Extending the current measurement period to a 
required 5-year timeframe would also reduce the 
likelihood of reporting false SOC gains. This issue 
arises when trying to detect relatively small SOC 
increases over a short period of time against a 
background of large SOC stocks that exhibit high 
spatial and temporal variability [79,81,91,92]. 
Management practices are expected to increase 
SOC stocks 0.1 to 1.2 t C ha−1 [5,71], whereas back
ground SOC stocks in many soils, just in the top 0- 
30 cm, can range from 30 to 90 t C ha−1. 
Therefore, measurement intervals of 5 years or 
more are generally required to detect statistically 
significant cumulative SOC stock changes (with a 
moderate sampling density), given that potential 
annual SOC stock changes are often less than 1% 
of the existing stocks [81].

The Government could also consider other meas
ures to increase the conservativeness of short-term 
crediting, some of which were removed from a pre
vious iteration of the Soil Carbon Method 
(Measurement of Soil Carbon Sequestration in 
Agricultural Systems Methodology Determination, 
2018). For example, in an earlier version of the 
method, 50% of the ACCUs generated at the first 
sampling period were withheld and only returned 
when a second sampling round demonstrated that 
the sequestration had been maintained. The 
Government could also revert to the requirement of 
regressing at least three sampling events, rather 
than measuring between two points in time, to 
“smooth out” SOC peaks and troughs and consider 
the timing of SOC re-measurement events. For 
instance, re-sampling events should occur in the 
same season and if monthly rainfall has been above 
the long-term average for six consecutive months, 
re-measurement should be delayed until rainfall 
returns to levels more representative of the long- 
term average. Finally, the Government could con
sider transitioning to a practice-based payment sys
tem (where farmers are rewarded for implementing 
practice change), rather than the current perform
ance output-based system, to simplify implementa
tion and reduce costs [93,94].

Conclusion

We acknowledge the importance of a high-integrity 
carbon credit scheme, including soil carbon credits, 
in the transition to lower national greenhouse gas 
emissions. However, issuing carbon credits for short- 
term SOC gains – gains that our analysis suggests 
are largely transient – poses a significant risk to both 
farmers and the carbon industry, potentially under
mining the credibility of the crediting scheme. Until 
SOC models have been adequately calibrated to 
account for management change in the Australian 
grazing context (using data from a coordinated Soil 
Carbon Network) we propose two key amendments 
to the current Soil Carbon Method 2021, which 
should also be considered by other soil carbon cred
iting schemes. Firstly, the minimum measurement 
period should be extended to at least five years to 
reduce the impact of interannual rainfall variability 
on SOC accumulation and reduce the risk of report
ing false SOC gains. Secondly, short-term crediting 
should be based on reasonable bounds for expected 
long-term SOC sequestration informed by the best 
available science, above which credits are temporar
ily withheld. Ultimately, ensuring the success and 
integrity of soil carbon credits requires large-scale, 
collaborative efforts among researchers, Carbon 
Service Providers, farmers and other stakeholders. 
The Government should play a key role in oversee
ing the transparent compilation of data and evi
dence to ensure that soil carbon credits achieve 
their intended goal of mitigating climate change.
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